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The Exactly Solvable Pöschl-Teller Potential
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We revisit a well known quantum mechanical problem, the trigonometric Pöschl-Teller potential,

which is an exactly solvable one-dimensional problem. The potential appears in many physical

systems of study and thus the technique of solution is interesting and important for students and

readers to know. We wish to elaborate on this in this article.

I. INTRODUCTION

An interesting problem in one-dimensional quantum mechanics is the trigonometric Pösch-Teller poten-

tial. This appears in several interesting scenarios in physics [1–3]. Although it is complicated to look at, it

turns out that it is exactly solvable. Here we follow Ref. [4] and elaborate the technique of solution for the

purpose of the reader. The form of the potential is given by

V (x) =
V0
2

{
χ(χ− 1)

sin2 αx
+
λ(λ− 1)

cos2 αx

}
(1)

with χ > 1 and λ > 1 and V0 = ~2α2/m. This potential is bounded on both sides by singularities at x = 0

and x = π
2α . As χ → 1, the singularity becomes less and less pronounced at x = 0, until at χ = 1, it

vanishes. In that case the potential becomes

V (x) =
V0
2

λ(λ− 1)

cos2 αx
=
V0
8

[
1

sin2(αx2 −
π
4 )

+
1

cos2(αx2 −
π
4 )

]
, (2)

which again has the same form, with singularities at αx = ±π
2 , and χ = λ. Thus in the χ = 1 case, the

two potential ‘holes’ between −π
2 and 0 and 0 and π

2 unite into one large hole. Thus the potential form

remains same with redefinitions α → α/2 and V0 → V0/4. More over, the potential is clearly periodic but

for solving the Schrodinger equation, it plays no role, since the barriers are impenetrable. Thus we pick a

single hole, say the interval 0 ≤ x ≤ π
2α and solve the Schrodinger equation

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (3)

ψ(x) is obviously a bound state since we have infinite barriers at 0 and π
2α . Eq. (4) can be rewritten as

d2ψ(x)

dx2
− 2m

~2
V (x)ψ(x) +

2m

~2
Eψ(x) = 0. (4)
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II. SOLUTION BY HYPERGEOMETRIC SERIES

Making the following change of variables : y = sin2 αx, Eq. (4) becomes

y(1− y)
d2ψ̃(y)

dy2
+

(
1

2
− y
)
dψ̃(y)

dy
+

1

4

(
κ2

α2
− χ(χ− 1)

y
− λ(λ− 1)

y

)
ψ̃(y) = 0, (5)

where κ2 = 2mE
~2 . Here, we denote ψ(x) as ψ̃(y). This differential equation has three regular singular

points at y = 0, 1,∞ and is very close to the hyper-geometric differential equation

z(1− z)f ′′(z) + [c− (a+ b+ 1)z]f ′(z)− abf(z) = 0. (6)

To we recast them in the above form, assume a series solution about y = 0, ψ̃(y) =
∑∞

n=0 any
µ+n.

Equating the lowest power of y i.e. yµ−1 we get the indicial equation

µ(µ− 1) +
1

2
µ− 1

4
χ(χ− 1) = 0. (7)

Since a0 6= 0, we get the two roots of the indicial equation : µ = χ
2 ,

1−χ
2 . Since χ > 1 the second indicial

root leads to a solution of the form

lim
y→0

y
1−χ
2

∞∑
n=0

any
n →∞. (8)

Thus, we choose the first indicial root. We can do the same about the point y = 1. Assuming a series

solution about y = 1, ψ̃(y) =
∑∞

n=0 ān(1− y)ν+n, we get the indicial equation

ν(ν − 1) +
ν

2
− 1

4
λ(λ− 1) = 0. (9)

We get the following roots ν = λ
2 ,

1−λ
2 . Again, we choose the first root as the second root leads to singular

behavior at y = 1. Thus, we can again write

ψ̃(y) = y
χ
2 (1− y)

λ
2 f(y). (10)

Plugging this into E. (5), we get the equation for f(y)

y(1− y)f ′′(y) + [(
1

2
+ χ)− (1− χ+ λ)y]f ′(y) +

1

4
[
κ2

α2
− (χ+ λ)2]f(y) = 0. (11)

This is finally in Hypergeometric form with a+ b = χ+λ, c = χ+ 1
2 , ab = 1

4 [(χ+λ)2− (χ+λ)2]. Since

the equation is symmetric in a and b we can choose

a =
1

2
(χ+ λ+

κ

α
)

b =
1

2
(χ+ λ− κ

α
). (12)
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The Hypergeometric equation can now be solved using Frobenius method, with the trial solution

f(y) =

∞∑
n=0

any
k+n (13)

from which we get the two possible values of k = 0, 1− c and the recurrence relation

an+1 = an
(k + n+ a)(k + n+ b)

(k + n+ 1)(k + n+ c)
(14)

which yields the solution

fk(y) = a0

∞∑
n=0

(k + a)n(k + b)n
(k + 1)n(k + c)n

yk+n. (15)

Here, the Pochammer symbol is defined as

(k + w)n = (k + w)(k + w + 1) . . . (k + w + n− 1)

=
Γ(k + w + n)

Γ(k + w)
. (16)

Hence, the two solutions are

f0(y) = 2F1(a, b, c; y)

f1−c(y) = y1−c2F1(a+ 1− c, b+ 1− c, 2− c; y). (17)

Now, the full solution in our case is

f(y) = c12F1(a, b, c, y) + c2y
1−c

2F1(a+ 1− c, b+ 1− c, 2− c; y) (18)

with a = 1
2(χ+ λ+ κ

α), b = 1
2(χ+ λ− κ

α), c = χ+ 1
2 . Now we want to impose the boundary conditions

that the wave function vanishes at x = 0 and x = π
2α as V →∞ at those points i. e.

ψ̃(0) = 0, ψ̃(1) = 0. (19)

Note that

lim
y→0

2F1(a, b, c; y)→ 1. (20)

Thus

lim
y→0

ψ̃(0) = lim
y→0

y
χ
2 (1− y)

λ
2 f(y) = lim

y→0
(1− y)

λ
2
[
c1y

χ
2 + c2y

1−χ
2
]
→∞. (21)

Since χ > 1, the second term is singular, so we must have c2 = 0. For the case y → 1, it is a bit more

subtle. First, we observe the domain convergence of the hypergeometric series using De Alembert’s ratio

test

lim
n→∞

∣∣∣∣(a)n+1(b)n+1y
n+1

(1)n+1(c)n+1

(1)ncn
(a)n(b)nyn

∣∣∣∣→ |y|. (22)
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Thus, the series diverges for y > 1. For y = 1, since an+1 ∼ an as n→∞, the series again diverges. Thus,

we can get a solution ψ̃(y) which vanishes at y = 1 if the series truncates. Note that this heuristic argument

does not take into account the rate of divergence of the hypergeometric series which plays an overall role

required for convergence due to the factor of (1− y)
λ
2 appearing in ψ̃(y), but it is sufficient for the purpose.

Now looking at the Pochammer symbol

(a)n = a(a+ 1) . . . (a+ n− 1)

(b)n = b(b+ 1) . . . (b+ n− 1).

(23)

If a and b are 0 or negative integers say −m, then the series truncates as the (m+ 1)th onward coefficient in

the hypergeometric series becomes 0. It a = −m, then b = χ+ λ+m and vice versa. Since the solution is

invariant under exchange of a, b both conditions are equivalent. Finally, we can find the energy eigen value

as

a.b = −m(χ+ λ+m) =
1

4

[
(χ+ λ)2 − κ2

α2

]
⇒ Em =

V0
2

(χ+ λ+ 2m)2. (24)

The corresponding eigenfunction function finally takes the form

ψ̃(y) = c1y
χ
2 (1− y)

λ
2 2F1(a, b, c; y)

= c1 sinχ(αx) cosλ(αx)2F1(−m,χ+ λ+m,χ+
1

2
; sin2 αx).

(25)

III. CONCLUSION

Here, we provide a review of the method for solving the trigonometric Pösch-Teller potential, which is

an exactly solvable one-dimensional quantum mechanical problem. The primary goal of this review was to

elaborate the solution to the readers, on how a complicated looking problem can still be solved exactly. In

fact, this potential plays an important role in the study of supersymmetric quantum mechanics as well, and

the reason for the solvability could be guessed from the nature of the potential. The interested readers may

refer to Ref. [5].
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