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Qubits are the building blocks for quantum computers and quantum information processing. How-

ever, there is a great deal of dispute over the most ideal types of qubits. The nanomechanical qubit

might be one potential addition to the qubit platforms. Here, we briefly outline the underlying phys-

ical principle of a nanomechanical qubit, where the mechanical vibrations stores the information.

I. INTRODUCTION

Qubits serve as the fundamental units for quantum computers and quantum information processing. Re-

search and development in this realm are rapidly progressing to determine which system or platform will

emerge as the frontrunner. Among the array of possibilities are superconducting Josephson junctions[1, 2],

semiconductor qubits [3–5], trapped ions [6–8], topological qubits [9, 10], ultra-cold neutral atoms [11, 12],

and even diamond vacancies [13–15]. However, only a select few qubit platforms have thus far showcased

the potential for quantum computing, meeting criteria such as high-fidelity controlled gates, effortless qubit-

qubit coupling, and robust isolation from environmental interference, ensuring prolonged coherence. Nano-

mechanical resonators stand as a potential contender within this elite group of platforms. Over the past

three decades, we have observed remarkable advancements in micro/nano-electromechanical systems [16–

18]. This progress has led to technology that demonstrates exceptional performance across various appli-

cations, including sensing, imaging, timing, signal processing, and logic devices, among others. Moreover,

these devices provide an intriguing opportunity to explore fundamental physics phenomena that include the

quantum effects in macroscopic objects and the coupling of mechanical motion with photons, spins, and

electrons.
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FIG. 1: The quantized energy levels of a simple harmonic oscillator having a frequency ω0. The energy levels are

evenly spaced.

A mechanical resonator is usually modeled as a harmonic oscillator. The energy of a simple harmonic

oscillator can be written asEn = (n+1/2)~ω0, where n = 0, 1, 2, ..., ~ is the reduced Planck constant, and

ω0 is the resonance frequency of the oscillator. Here, n = 0 corresponds to the zero point energy with a cor-

responding fluctuation in displacement known as zero point displacement fluctuation xzp =
√

~/(2mω0).

This allows a mechanical resonator to be a test-bed for the quantum nature of macroscopic objects. There

has been an intense effort to study mechanical resonators in the quantum regime. Several cool-down tech-

niques have been implemented to achieve the ground state of a mechanical resonator. These devices are

becoming a crucial new avenue in quantum science and technology. A plethora of proposals suggests their

utility in storing, processing, and transducing quantum information. This requires progressively advanced

methods to control mechanical motion within the quantum realm. These devices have been employed in

achieving quantum ground state [19, 20], quantum squeezing [21–23], backaction-evading measurements

[24, 25], entanglement [26, 27], coherent microwave-optical interface [28, 29], and superconducting qubit-

mechanical interfaces [19, 30].

A recurrent question has been whether it is possible to realize strong nonlinearities in nanomechanical

resonators approaching the quantum ground state. The origin of nonlinearity in case of large displacements

is connected to the stress that depends nonlinearly on the displacement of a particular mode. It modifies the

Hooks law as F = −mω2
0x − γx3 where γ is the the weak Duffing (or Kerr) constant and m is effective

mass of the the mechanical eigenmode [31, 32]. The conventional devices are perfectly linear in the quantum

regime. This means that the energy levels are equidistant. The vibrations in these resonators approaching

the quantum ground state are only nonlinear at much larger values of xnl, typically at xnl/xzp = 106 or

above. There have been efforts to introduce nonlinearity in mechanical resonators without much success.

The proposition of anharmonicity resulting from proximity to a buckling instability has been made [33, 34].

Nevertheless, implementing such a scheme experimentally poses significant challenges.

Pistolesi et al [35] recently introduced a theoretical framework for a mechanical qubit utilizing the
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coupling of one of the flexural modes of a carbon nanotube resonator to the charge state of a double-

quantum dot defined in the same nanotube. It becomes feasible to generate adequate anharmonicity in the

mechanical oscillator, enabling the coupled system to function as a mechanical quantum bit. Nevertheless,

it is attainable solely when the device is operated in the ultrastrong coupling regime.

II. THE DEVICE AND THE ORIGIN OF ANHARMONICITY
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FIG. 2: (a) A schematic diagram that depicts the nanotube oscillating at ω0. A quantum dot, shown in purple,

emerges along the suspended nanotube, with an overall electron tunneling rate Γe to the left and right leads. (b)

When the fluctuations between the two electron states are rapid compared to the mechanical motion (Γe > ω0), the

force experienced by the vibrations is an average of the two linear F vs x curves (black straight lines) represents the

situation in which the dot is filled with either N or N + 1 electrons weighted by the Fermi-Dirac distribution. The

resulting force becomes nonlinear (shown in red) when the vibration displacement is smaller than kBTxzp/(~g). The

reduced slope at zero displacement is a measure of the decrease in ω0. As the temperature decreases, nonlinearity

increases, as evidenced by the further reduction in slope at zero vibration, as depicted by the dashed red line. The

separation between the two curves is ∆x = 2(g/ω0)xzp due to the force generated by the electron tunneling onto the

quantum dot. (c) A schematic of the conductance G as a function of the gate voltage.
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Recently, there has been an experimental demonstration of a new mechanism to boost the anharmonicity

of a carbon nanotube mechanical resonator [36]. This was achieved by coupling the resonator with single

electron tunneling (SET) via a quantum dot non-resonantly. Figure 2(a) shows the schematic of a vibrating

nanotube at a resonance frequency ω0. The typical dimensions of the devices range from approximately

1− 1.5 µm in length, with a diameter of about 3 nm. The separation distance between the nanotube and the

gate electrode is about 150 nm. A highly resistive silicon dioxide substrate with prepatterend source drain

and gate electrodes were used to grow nanotube using chemical vapour deposition technique. The nanotube

has a narrow band-gap and its electrochemical potential is tunable by underlying gate electrodes. The

quantum dot is formed by creating a p-n tunnel junction at the ends of the suspended nanotube by applying

a DC gate voltage. Figure 2(c) shows a simple schematic of gate voltage dependence of the conductance

in the incoherent tunneling regime. This clearly indicates how a degenerate two-level system fluctuates

between two states having N and N + 1 electrons. The charging energy Ec = e2/CΣ for the devices were

about 8 meV, where e is electronic charge and CΣ is the total capacitance of the quantum dot. A significant

capacitive coupling was established between the nanotube island and the gate electrode by maintaining a

minimal separation distance. This results in Cg being much greater than Cs and Cd, where Cs and Cd

represent the capacitances between the nanotube island and the source and drain electrodes, respectively.

The capacitance values were estimated by measuring the charge stability diagram of the quantum dot.

The resonator is coupled to the electrons within the dots through capacitive coupling between the nan-

otube and the gate electrode. This coupling can be described by the Hamiltonian H = −~gnex/xzp, where

g is the electromechanical coupling, and ne = 0, 1 is the additional electron number in the quantum dot.

Figure 2(b) describes the origin of nonlinearity in the mechanical resonator. The two black lines correspond

to the linear force-displacement curves, when the dot is filled with either N or N + 1 electrons, whose

slopes are governed by the spring constant mω0
2. The separation between two curves, ∆x = 2(g/ω0)xzp,

is caused by the force generated by one electron tunnelling onto the quantum dot. When the fluctuations

between the two electron states are rapid compared to the mechanical motion (Γe > ω0), the force expe-

rienced by the vibrations is simply an average of the two black force-displacement lines weighted by the

Fermi-Dirac distribution. The resulting force (shown in red) is nonlinear when the vibration displacement

is smaller than kBT
~g xzp. The reduced slope at zero vibration displacement is an indication of a decrease in

ωm. Here, T is the temperature, and kB is the Boltzmann constant. If we decrease the temperature, the

slope at zero point displacement is reduced further as shown by dashed red line in Fig. 2(b). The electron

fluctuation rate is faster than the bare mechanical frequency i.e. (Γe > ω0) in the adiabatic limit. In this
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case, the fluctuations result in the nonlinear restoring force as given by

Feff = −
[
mω0

2 − 1

4x2
zp

(~g)2

kBT

]
x− 1

48x4
zp

(~g)4

(kBT )3
x3 (1)

for Γe < kBT and x� 2kBT/~g.

FIG. 3: (a) Schematic of conduction peaks with gate voltage in the SET regime. (b) and (c) represent schematics of

change in resonance frequency and mechanical linewidth of the resonator across the conduction peaks, respectively.

Figure 3(b) illustrates the reduction of resonance frequency across the conduction peaks [shown in 3(a)]

due to capacitive coupling between the mechanical vibration and the SET. Figure 3(c) shows a schematic

of increase in linewidth Γ of the vibration across the conduction peaks [shown in 3(a)] due to incoherent

tunneling of electrons between the dots and source/drain electrodes. A large number of experiments have

been carried out [37–44], but the decrease in ω0 has always been around 1% as the value of g was modest.

The linear coefficient of the equation gives us

ωm = ω0

√
1− εp

4kBT
, (2)

where εp = 2~g2/ω0 is the polaronic energy. It is also clear that ωm decreases with decreasing temperature.

It was satisfactorily explaining the experimental observation. However, all the previous experiments could

not be performed in a regime where 2kBT � ~g2/ω0 due to lower values of g. This regime is referred as

ultrastrong coupling regime, which can be realized in a mechanical system not in the ground state (kBT >

~ω0) if g >
√

2ω0. It is also clear that ωm vanishes when 2kBT = ~g2/ω0 since the linear part of the

restoring force vanishes as illustrated by the blue solid line in Fig. 4.

However, when we operate the device in the ultra-strong coupling regime, the nonlinear part dominates

the dynamics of the resonator. The nonlinear force can even result in a vibration potential that is purely quar-

tic in displacement. As a consequence of this nonlinearity, the oscillation period becomes highly dependent

on the oscillation amplitude. Thermal fluctuations enable the oscillator to explore various amplitudes, re-

sulting in different resonance frequencies. These fluctuations produce an observed resonance frequency that
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is significantly higher than ωm when averaged as shown in Eq. (2). The dashed red line in Fig. 4 depicts

the theoretical prediction of the resonance frequency as a function of εp/kBT incorporating both quartic

nonlinearity and thermal fluctuations. This result was used to fit the temperature dependence of the reso-

nance frequency at the conductance peak to estimate εp. The numerical result in Fig. 4 was fitted with the

following analytical expression

ωm = ω0

[
1 +

5∑
n=1

an

( εp
kBT

)n]
(3)

with a1 = −0.127655, a2 = 0.010475, a3 = 0.0125029, a4 = −0.00480876, and a5 = 0.000515142,

which is within 0.1% of the numerical result for 0 ≤ εp
kBT
≤ 4.
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FIG. 4: The dashed red line illustrates the theoretical prediction for the renormalization of resonance frequency as a

function of εp/kBT , encompassing both quartic nonlinearity and thermal fluctuations. In contrast, the solid blue line

represents the renormalization of resonance frequency excluding quartic nonlinearity and thermal fluctuations.

In contrast to earlier experiments, in Ref. [36], a substantial dip of approximately 25% in ω0 was

observed, along with an increase in the mechanical linewidth over 90% when the system was positioned

on a conductance peak (Fig. 3), where the electronic two-level system reaches a state of degeneracy. Then,

the authors repeated the measurements at different temperatures. The measured reduction in resonance
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frequency as a function of temperature was then fitted using Eq. (3) to estimate the value of g. The largest

value of the coupling strength g obtained from measurements was g/2π = 0.5 GHz. That corresponds

to g/ω0 = 17. The value of g was consistent with the estimation g/2π = 0.55 GHz obtained from

independent electron transport measurements. They used the formula g = e(C ′g/CΣ)V dc
g /
√

2m~ω0, where

m is estimated from driven spectral response measurements [45]. The spatial derivative of the dot-gate

capacitanceC ′g and the total capacitanceCΣ of the quantum dot were obtained from charge stability diagram

of the device in the SET regime. These measurements established that the system was deep in the ultrastrong

coupling regime.

III. FUTURE DEVICES AND EXPERIMENTAL PLAN

 (c)

FIG. 5: (a) A schematic of the electronic confinement potential where t is the the hopping amplitude and ε is energy

difference between the two individual charge states. (b) A schematic of a suspended carbon nanotube which hosts a

double quantum dot. It’s one-electron charged state is interconnected with the secondary flexural mode. (c) Upper and

lower right panels show effective potential for E+ and E−, respectively using Eq. (6) for t/~ω0=20. Here, E+ and

E− are scaled by ~ω0. Thin solid, dashed and thick solid lines correspond to 4g/ω0 = 0, 100, and 200, respectively.

The experimental validation of the ultrastrong coupling regime and strong anharmonicity represents a

significant achievement, as it establishes a foundation for realizing nanomechanical qubits. However, at
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low temperatures, the damping rate increases significantly due to the coupling between the resonator and

the single quantum dot. The mechanical resonance width in the high temperature limit (kBT � ~g2/ω0) is

given by [35]

∆ω = Γ0 +
1

2

~g2

kBT

ω0

Γe
, (4)

where Γ0 is the damping rate due to other dissipation mechanisms. This charge fluctuation can be minimized

by introducing two quantum dots in the resonators. It becomes feasible to define and control a charge qubit

embedded in the resonator by adjusting the gate voltages independently for the two quantum dots. Pistolesi

et al [35] theoretically proposed a possibility of a mechanical qubit by coupling the charge qubit with the

second flexural mode in the strong coupling regime as shown in Fig. 5(b).

The Hamiltonian of the system can be described as

H =
p2

2m
+
mω2

0x
2

2
+
ε

2
σz +

t

2
σx − ~g

x

xzp
σz (5)

where the first two terms correspond to the mechanical mode of frequency ω0 with effective mass m,

displacement x, and momentum p. The second and third terms corresponds to the electronic state of the

quantum dots, where the two Pauli matrices σz and σx represent the dot charge energy splitting and inter-

dot charge hopping, respectively. The final term corresponds to the coupling between the vibration and the

charge state. This arises physically from the fluctuation of the force exerted on the mechanical mode when

the charge transition occurs between the two quantum dots. The magnitude and the polarity of g can be

adjusted across a wide range by adjusting the gate voltages. In the semiclassical Born Oppenheimer picture,

by diagonalizing the above Hamiltonian, we find the energy eigenvalues as

E±(x) =
mω2

0x
2

2
±

√(
ε− 2~g

x

xzp

)2
+
t2

2
. (6)

Considering ε = 0 and for small x we can rewrite equation 6 as

E±(x) = ± t
2

+
mω2

0

2

(
1± 4~g2

ω0t

)
x2 ∓ 4m2ω2

0~2g4

t3
x4. (7)

The interaction between the resonator and the double dot results in a renormilization of resonnace fre-

quency and the emergence of quartic and higher-order terms. Figure 5(c) shows that this interaction stiffens

the resonant frequency of the upper branch while softens that of the lower one. The quadratic term in Eq. (7)

becomes negative if g >
√
ω0t/4~. This results in a double-well potential and bistability akin to what is

anticipated for a single quantum dot coupled to a mechanical oscillator. Pistolesi et al [35] estimated the

quantized energy levels of the system by diagonalizing Eq. (5) numerically. It was shown that for a large

value of g, the anharmonicity a = (ω21 − ω01)/ω01 is enough for enabaling quantum control of the qubit
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formed by the |0〉 and |1〉 state. The anharmonicity about 5% is typically used for a superconducting qubit

for full quantum control, where the transition frequencies ω01 and ω21 are between |0〉 and |1〉 states and

between |1〉 and |2〉, respectively. At very low temperature, the damping originates from the double quan-

tum dots is suppressed exponentially. It is possible to achieve a very high quality factor of the resonator

about a few millions. The decoherence of the hybrid system is improved by three oders of magnitude

compared to its charge qubit counterpart. It is expected to have sub-kHz decoherence rate in this system.

Additionally, mechanical qubits have novel prospects for quantum sensing. Rather than using traditional

mechanical resonators to investigate AC forces, it is possible to detect weak DC forces with an exceptional

sensitivity down to ∼ 10−21N/
√
Hz [35]. The qubit state can be read out by coupling the system to a

microwave superconducting cavity and utilizing a dispersive interaction, similar to the technique used with

superconducting qubits.

IV. CONCLUSION

We discussed why a mechanical qubit is not possible to realize with conventional mechanical resonators

though it has a remarkable success in preparation of quantum ground state, squeezing, entanglement etc. in a

macroscopic objects. We explained the physical origin of the anharmonicity in a carbon nanotube resonator

embedded with a quantum dot in detail. Then, we addressed the limitations of a single quantum dot hosted in

nanotube the tube. Subsequently, we elaborated the methodology to overcome those limitations by hosting

a double quantum dot in the nanotube as prescribed by Pistolesi et al [35]. Mechanical qubits may offer

new perspectives for quantum sensing and quantum computing.
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