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Spin and valley dependent transport in a biased dice lattice
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We study the spin and valley-dependent transport in a spin-orbit coupled biased dice lattice. We

find that the presence of a bias term and the spin-orbit interaction (SOI) give rise to the spin-split

energy spectrum. The SOI couples the valley and the spin degrees of freedom, resulting in a spin and

valley-resolved Berry curvature. We find a profound variation in the Berry curvature for different

spin states around both valleys. The spin and valley Hall conductivities are calculated for various

values of the bias term. We find the interplay between the bias term and SOI term leads to a quantum

phase transition from a topological insulating phase to a trivial band insulating phase accompanied

by the emergence of the valley Hall effect and the suppression of the spin Hall effect.

I. INTRODUCTION

Since the discovery of graphene [1], there has been a growing interest in two-dimensional crystals like

silicene [2], MoS2 [3], etc., with a honeycomb lattice structure for potential applications in new-generation

electronic devices [4, 5]. The low-energy electrons in such crystals have an extra degree of freedom called

“valley”. The valley index is associated with the special points of the Brillouin zone, called the Dirac points,

K and K ′ where the energy bands meet each other. Since there is a significant distance in momentum space

that separates the valleys, the intervalley scattering is highly suppressed in the presence of smooth scattering

potential, thus making valley index an intrinsic property of low energy carriers. Similar to the application

of spin in spintronics, the utilization of the valley index for encoding and controlling information leads to

the emergence of a new field of research known as valleytronics [6–9]. The valley Hall effect stands out

as an intriguing phenomenon resulting from the manipulation of the valley degree of freedom, where a

longitudinal electric field drives carriers in opposite transverse directions based on their valley index. D.

Xiao [6] first predicted it theoretically in graphene with broken space-inversion symmetry, and subsequently,

it was observed experimentally in MoS2 [10]. The breaking of inversion symmetry in crystals is necessary

to manifest valley-contrasting physics. The SOI in such materials couples the valley index with the spin

of the carriers, leading to various spin and valley-coupled phenomena. Over the years, various fascinating

spin and valley-dependent phenomena like valley polarization by spin [11], spin-valley locking [12, 13],

spin-valley interactions [14, 15], spin-valley polarization [16, 17], spin-valley dependent optical selection

rules [18], etc, have been extensively studied.
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In this paper, we calculate the spin and valley Hall conductivities to study the spin and valley coupled

transport properties of a biased dice lattice. To study the effect of the SOI, we consider an intrinsic SOI of

Kane-Mele type [19]. The consideration of such SOI usually results in a spin Hall effect [19–21], marked

by the emergence of conducting channels along the boundaries of the sample. Our system of interest is a

spin-orbit coupled biased dice lattice [22]. The bias term and the SOI break the space-inversion symmetry

of the dice lattice. The Dice lattice is a graphene-like two-dimensional material with T3 symmetry. Like

graphene, electrons in the dice lattice obey the Dirac equation near theK andK ′ points. Although the zero-

field spectrum of dice and graphene lattices appears identical, these systems differ fundamentally because

the former supports a zero-energy flat band. In the dice lattice, low-energy excitations follow the Dirac-

Weyl Hamiltonian with an enlarged pseudospin S = 1. Moreover, a significant disparity arises between

the graphene and the dice lattice when look at the closed trajectories of the quasiparticles in momentum

space. Unlike the Berry phase of π observed in graphene, the quasiparticles in the dice lattice do not

acquire any nontrivial Berry phase. Figure 1 illustrates the geometry of the dice lattice, which includes an

additional site positioned at the center of each hexagon in the honeycomb lattice connecting with one of

the two inequivalent sites of the honeycomb lattice. Among these sites, two (A and C) are referred to as

rim sites, while the third (B) is known as a hub site, having coordination numbers of 3 and 6, respectively.

Experimental realization of the dice lattice is feasible in a SrTiO3/SrIrO3/SrTiO3 heterostructure [23].

Additionally, it can be replicated in an optical lattice [24] setup by confining ultra cold atoms with the aid

of three pairs of oppositely moving laser beams.

A

B

C

FIG. 1: The lattice geometry of the dice lattice is depicted here, where a1 and a2 represent the lattice vectors.
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II. MODEL AND METHODS

Allowing the nearest-neighbor (NN) and next nearest-neighbor (NNN) hoppings only, the real space tight-

binding Hamiltonian for biased dice lattice can be written as

H = t
∑
〈ij〉

C†isCjs + t
∑
〈jk〉

C†jsCks +
iλ

3
√

3

∑
〈〈ij〉〉ss′

µijC†isszCjs′ +
iλ

3
√

3

∑
〈〈jk〉〉ss′

µjkC†jsszCks′ +
∑
is

νi∆iC†isCis,(1)

where C†is(Cis), C†js(Cjs), and C†ks(Cks) creates (annihilates) an electron of spin polarization s at sites A,

B, and C, respectively. The first term in Eq. (1) illustrates the NN hopping between A and B sites, while

the next term represents the NN hopping between B and C sites. In both cases the NN hopping strength

is t. The third and fourth terms are the Kane-Mele type SOI term arising from the NNN hoppings A-B-A

and C-B-C, respectively. Here, λ denotes the strength of the SOI. For clockwise (counter-clockwise) NNN

hopping we have µij , µjk = −1 (+1). Here, s, s′, and sz represent the real spin Pauli operators. The final

term is the staggered lattice potential or the bias term ∆i, where νi takes +1 and −1 for the A and C sites,

respectively.

The Hamiltonian in Eq. (1) on projecting into a reciprocal space and expanding it around the Dirac points

results in an effective Hamiltonian

H(k) =


∆− λτs fk√

2
0

f∗k√
2

0 fk√
2

0
f∗k√

2
−∆ + λτs

 , (2)

where fk = ~vF (τkx + iky) with the Fermi velocity vF = 3at/
√

2 and τ = ±1 is the valley index

representing K and K ′ points. Diagonalizing the Hamiltonian given in Eq. (2), we find the following spin

and valley-dependent eigenenergies

Eτsn = n
√
ε2k + (∆− λτs)2. (3)

Here, n = −1/0/ + 1 denotes the valence/flat/conduction band, respectively, and εk = ~vFk with k =√
(k2
x + k2

y). The presence of the bias term and the SOI term together introduces an energy gap Eg =

|∆ − λτs| between the flat band and the conduction band or the valence band at a particular Dirac point.
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The corresponding normalized eigenstates are obtained as

uτs0 (k) =
1√
2N0



−fk
(∆−λτs)

√
2

f∗k
(∆−λτs)


, uτs±1(k) =

1√
2N±1



fk(
Eτs±1(k)−∆+λτs

)
√

2

f∗k(
Eτs±1(k)+∆−λτs

)


, (4)

where N0 =

√
ε2k+(∆−λτs)2)

|∆−λτs| and N±1 =
√

2|Eτs±1|
εk

are the normalization constants.
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FIG. 2: The energy spectrum of the biased dice lattice for (i) ∆ 6= λ and (ii) ∆ = λ. Thick solid (dashed) line

represents the spin-up (spin-down) conduction band (blue in color), thin solid (dashed) line is for the spin-up (spin-

down) valence band (red in color) and the Flat green line is the spin degenerate flat band. Here, we have taken λ = 50

meV.

The broken space-inversion symmetry due to the presence of the bias and the SOI results in a spin and valley-

dependent Berry curvature Ωτs
n (k). The Berry curvature can be calculated using the relation Ωτs

n (k) =

i〈∇ku
τs
n (k)| × |∇ku

τs
n (k)〉, where uτsn (k) is the periodic component of the Bloch function corresponding

to the nth energy band. The Berry curvature transforms as Ωτs
n (k) = Ωτ ′s

n (k) and Ωτs
n (k) = −Ωτ ′s′

n (k)

under the space-inversion and the time reversal symmetry operations, respectively. Here, τ ′ = −τ and

s′ = −s. Therefore a non-zero Berry curvature demands the breaking of any one of these symmetries.
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FIG. 3: The variation of Berry curvature around the K valley[(i) and (ii)] and the K ′ valley[(iii) and (iv)]. The left

(right) panel corresponds to ∆ < λ (∆ > λ). Thick solid (dashed) line indicates the Berry curvature of the spin-up

(spin-down) conduction band (blue in color) and thin solid (dashed) line is for the Berry curvature of the spin-up

(spin-down) valence band (red in color).

In the presence of an in-plane electric field, Ωτs
n (k) imparts an anomalous velocity to an electron perpen-

dicular to its motion, resulting in an intrinsic contribution to the anomalous Hall conductivity [6]

στsxy = (e2/~)

∫
d2k

(2π)2

∑
n

fn(Eτsn )Ωτs
n (k), (5)

where fn(Eτsn ) is the Fermi-Dirac distribution function. We define the spin (σspin
xy ) and valley (σvalley

xy ) Hall

conductivities as

σspin
xy =

∑
τs

sστsxy, (6)

σvalley
xy =

∑
τs

τστsxy. (7)
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III. RESULTS AND DISCUSSION

The energy spectrum of the biased dice lattice is depicted in Figs. 2 for K valley. There are, in principle,

six energy bands, three associated with spin-up and three with spin-down electrons. Here, we treat λ as a

fixed parameter and assume that ∆ is a freely adjustable parameter. We have plotted the energy spectrum

for λ 6= ∆ and λ = ∆ cases. In Fig. 2(i), when λ 6= ∆ (λ = 100 meV, ∆ = 50 meV), we observe

a splitting of the conduction and valence bands, resulting in a finite gap between both spin-up and spin-

down bands. Conversely, when ∆ = λ = 50 meV, Fig. 2(ii) demonstrates a gapless Dirac cone for the

spin-up electrons and a gapped Dirac cone for the spin-down electrons. This state has been termed a valley-

spin-polarized metal (VSPM) [25]. In this case, electrons with only one spin polarization are significant

for device applications facilitating spin-polarized transport. However, the flat band is nondispersive and

spin degenerate in both cases. Because of the time-reversal symmetry, the spin splitting in the two valleys

exhibits an opposite behavior. The role played by spin-up bands in the K valley is mirrored by spin-down

bands in the K ′ valley. Using Eq. (4), we find the Berry curvature for the individual band analytically as

Ωτs
± (k) = ∓τ

~2v2
F (∆− λτs)

[ε2k + (∆− λτs)2]3/2
and Ωτs

0 (k) = 0. (8)

The Berry curvature associated with the conduction and valence bands are equal in magnitude but opposite

in sign as a consequence of the particle-hole symmetry. However, Berry curvature of the flat band vanishes

due to its nondispersive nature. Furthermore, with the inclusion of the bias and the SOI terms, the Berry

curvature becomes spin and valley resolved. Figures 3(i) and 3(iii) depict the Berry curvature of conduction

and valence bands for λ > ∆ aroundK andK ′ valleys, respectively. The distribution of Berry curvatures is

mainly centered around k=0. In the K valley, for spin-up states, the Berry curvature of the conduction band

is negative, and that of the valence band is positive. Conversely, its sign reverses with reduced magnitude

for the spin-down states. However, in the K ′ valley, the Berry curvature follows the relation Ωτs
n (k) =

−Ωτ ′s′
n (k) as a consequence of the time-reversal symmetry. The variation of the Berry curvature for λ < ∆

around K and K ′ valleys is depicted in Figs. 3(ii) and 3(iv), respectively. In this case, the Berry curvature

for spin-up states exhibits an opposite trend, while that for spin-down states remains consistent with the

observations made when λ > ∆. The pronounced variation observed in the Berry curvature for different

spin states around both the valleys emphasizes the potential for manipulating spin and valley characteristics

of the Berry curvature.

Using Eqs. (5) and (8), we calculate the analytical expression of Hall conductivity at zero temperature for

various positions of the chemical potential (µ). For µ in the band gap, we obtain
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FIG. 4: The variation of (i) Spin and (ii) Valley Hall conductivities with the chemical potential (µ) for different values

of ∆ at T = 20K. Here we have considered λ = 50 meV.

στsxy = τ
e2

h

(∆− λτs)
|∆− λτs|

. (9)

Using Eqs. (6) and (7), we obtain the analytical expressions of σspin
xy and σvalley

xy as

σspin/valley
xy = 2

e2

h

[
sgn(∆− λ)∓ sgn(∆ + λ)

]
, (10)

where the − (+) sign denotes the spin (valley) Hall conductivity. The interplay between ∆ and λ leads to

various phases, which can be characterized based on the values of σspin
xy and σvalley

xy as

σspin
xy =

e2

h


−4 ∆ < λ

−2 ∆ = λ

0 ∆ > λ

and

σvalley
xy =

e2

h


0 ∆ < λ

2 ∆ = λ

4 ∆ > λ.

When µ lies in the band gap, both σspin
xy and σvalley

xy take a quantized values. For ∆ < λ, we have a finite

σspin
xy with vanishing σvalley

xy , indicative of a topological insulator or Quantum spin Hall insulator phase [19],
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with conductive channels at the boundary of the system. When ∆ = λ, both σspin
xy and σvalley

xy simultaneously

acquire non-zero values, indicating a VSPM phase [25]. A trivial insulator phase [6] emerges for ∆ > λ

with vanishing σspin
xy and a finite σvalley

xy .

When µ lies in the conduction band, we obtain

στsxy = τ
e2

h

[
(∆− λτs)

EF

]
, (11)

where EF =
√
~2v2

Fk
2
F + (∆− λτs)2. The corresponding σspin

xy and σvalley
xy are calculated as

σspin/valley
xy = 2

e2

h

[(∆− λ)

EF
∓ (∆ + λ)

EF

]
. (12)

Here the − (+) sign corresponds to the spin (valley) Hall conductivity. Due to the particle-hole symmetry,

a similar expression can be obtained when µ lies in the valence band. The variation of σspin
xy as a function of

µ for different values of the parameter ∆ is depicted in Fig. 4(i). Within a band gap, σspin
xy takes a quantized

and finite value as long as ∆ < λ and vanishes for ∆ > λ, indicating a transition from a topological insulator

to a trivial insulator phase. Additionally, it is observed that the width of the Hall plateau diminishes as ∆

increases, suggesting a reduction in the width of a band gap. The behavior of σvalley
xy as a function of µ with

increasing values of ∆ is shown in Fig. 4(ii). For ∆ = 0, σvalley
xy vanishes for all values of µ, implying the

necessity of a non-zero value of the bias term to break the valley degeneracy and observe the valley Hall

effect. As ∆ increases, for ∆ < λ, σvalley
xy remains zero within a band gap, while for ∆ > λ, it takes a

quantized and finite value.

IV. CONCLUSION

In summary, we have investigated the spin and valley-dependent transport in the biased dice lattice. The

presence of the bias and the SOI terms leads to a spin-split energy band structure. However, the flat band

remains spin degenerate. We have obtained analytical expressions of the Berry curvature corresponding to

individual bands. We analyzed the variations of the spin and valley Hall conductivities as a function of the

chemical potential analytically and numerically. It is observed that the interplay between the bias and the

SOI terms leads to a quantum phase transition from a topological insulator phase to a trivial insulator phase.

This phase transition can be characterized by the appearance of the valley Hall effect and the suppression

of the spin Hall effect, indicating a profound impact of the interplay of the bias and the SOI terms on the

transport properties of the system. Our results could provide valuable insights for developing spintronics

and valleytronics devices.
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